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Abstract
We investigate the frustrated quantum three-spin model (S1,S2,S3) of
spin = 1/2 on a triangle, in which spins are coupled with lattice-vibrational
modes through the antiferromagnetic exchange interaction depending on
distances between spin sites. The present model corresponds to the dynamic
Jahn–Teller system Eg ⊗ eg proposed by Longuet-Higgins et al (1958
Proc. R. Soc. A 244 1). This correspondence is revealed by using the
transformation to Nakamura–Bishop’s bases used in Phys. Rev. Lett. 54 861
(1985). Furthermore, we elucidate the relationship between a chiral order
parameter χ̂ = S1 · (S2 × S3) in the spin system and the electronic orbital
angular momentum �̂z in Eg ⊗ eg vibronic model: the regular oscillatory
behaviour of the expectation value 〈χ̂ 〉 with increasing energy can be found
as in the case of 〈�̂z〉 for vibronic structures. The increase of the additional
anharmonicity(chaoticity) is found to yield a rapidly decaying irregular
oscillation of 〈χ̂ 〉.
(Some figures in this article are in colour only in the electronic version)

Triangular Heisenberg antiferromagnets play an important role in our understanding of the
resonating valence bond (RVB) state, in which the scalar chirality for the three spins S1·(S2×S3)

is expected to have a nonzero expectation value [1–4]. This subject has been a focus of
recent experimental activities [5–7], since it was expected that frustrated s = 1/2 triangular
antiferromagnets might be realized in NaTiO2 and LiNiO2 [8].
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Figure 1. Triangle with antiferromagnetic spins.

In this letter, we investigate a triangular cluster model of the Heisenberg antiferromagnet in
which quantum spins are coupled with lattice vibrations, for the purpose of seeing the magnetic
properties of its high-lying states in relation to a typical dynamical Jahn–Teller system. In short,
the spin–lattice interaction is introduced by expanding the exchange interaction with respect to
deviation of lattice displacements from equilibrium. We shall address the following issue: with
the use of a unitary transformation for this spin system, the present model becomes equivalent
to that of the well-known vibronic problem for the Eg ⊗ eg Jahn–Teller system [9].

Let us consider the quantum spin system where three spins of spin = 1/2 are localized at
lattice sites 1, 2 and 3 on a triangle. The couplings between neighbouring spins are expressed
by the antiferromagnetic exchange interactions JA, JB and JC as shown in figure 1. The
corresponding Heisenberg Hamiltonian is

H = JAS1 · S2 + JBS2 · S3 + JCS3 · S1. (1)

We concentrate our attention on the spin state where the z component of the total spin satisfies
s1z + s2z + s3z = 1/2. Therefore, these bases are expressed explicitly as |↓↑↑〉, |↑↓↑〉, |↑↑↓〉,
where the arrows denote s jz for site j . By using these bases, we obtain the Hamiltonian matrix,

H
/ (

− h̄2

4

)
=




|↓↑↑〉 |↑↓↑〉 |↑↑↓〉
〈↓↑↑| −JA + JB − JC 2JA 2JC

〈↑↓↑| 2JA −JA − JB + JC 2JB

〈↑↑↓| 2JC 2JB JA − JB − JC


. (2)

Next we introduce the interaction between the spins and lattice vibrations, noting the
dependence of JA, JB and JC on distances between spin sites. As for the lattice vibration,
we employ the normal modes for the triangle; the normal eg modes, Q1 and Q2 which are
degenerate are given in figure 2. The remaining a1g mode (the breathing mode) has a much
higher strain energy and is ignored hereafter. (There are other global degrees of freedom
related to translation of the centre of mass and to rotation around the axis perpendicular to
the triangular plane. They however have nothing to do with lattice vibrations and are also
ignored.) Then the spin–lattice interaction is obtained as a result of the expansion of JA, JB

and JC linear in eg modes as follows:

JA = J ·
[
1 +

α

2
(Q1 − √

3Q2)
]

JB = J · [1 − αQ1]

JC = J ·
[
1 +

α

2
(Q1 +

√
3Q2)

]
,

(3)

where α is the coupling constant.
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Figure 2. Normal modes Q1
and Q2 in the triangle.

Concerning the spin system, on the other hand, we introduce the wavenumber bases
exploited by Nakamura and Bishop for the triangular spin plaquet [10–12]:

|k = 0〉 = 1√
3
(|↓↑↑〉 + |↑↓↑〉 + |↑↑↓〉)

k = 2π

3

〉
= 1√

3

(
|↓↑↑〉 + e

2π
3 i|↑↓↑〉 + e− 2π

3 i|↑↑↓〉
)

k = −2π

3

〉
= 1√

3

(
|↓↑↑〉 + e− 2π

3 i|↑↓↑〉 + e
2π
3 i|↑↑↓〉

)
.

(4)

These bases reflect clockwise and anticlockwise rotations of a spin configuration on the plane
of the triangle. The wavenumbers k = 0,±2π/3 correspond to phase factors in Bloch’s
theorem for the system with discrete rotational symmetry. From a viewpoint of the ligand–
field theory [13], the construction of the bases (4) from |↓↑↑〉, |↑↓↑〉 and |↑↑↓〉 is regarded as
a formation of Eg and A representations in D3d symmetry from the triply-degenerate T2g ones
in Oh symmetry. By using these new bases, the Hamiltonian matrix (2) can be transformed to

H/(− 3
4 h̄2 J

) =



|k = 0〉 |k = 2π
3 〉 |k = − 2π

3 〉
〈k = 0| 1 0 0
〈k = 2π

3 | 0 −1 α(−Q1 − iQ2)

〈k = − 2π
3 | 0 α(−Q1 + iQ2) −1


. (5)

From equation (5) we find that the k = 0 manifold is completely separated from other
manifolds, i.e., H = Hk=0 ⊕ Hk=±2π/3. Hk=0 and H±2π/3 correspond to the A and Eg

representations, respectively. The interaction Hamiltonian Hk=±2π/3 can result in a pair of
adiabatic energy surfaces, which together with the harmonic term (∝Q2

1 + Q2
2), forms the

Mexican hat potential. In fact, by applying the unitary transformation

U = − 1√
2

(
1 i

−1 i

)
, (6)

we obtain

H̃k=±2π/3 = U−1Hk=±2π/3U

= 3

4
h̄2 J I − 3α

4
h̄2 J

(
Q1 +Q2

+Q2 −Q1

)
. (7)

This expression just accords with the electron–lattice interaction part of the vibronic
Hamiltonian for the Jahn–Teller system Eg ⊗ eg,

HJT = 1
2ω

2(Q2
1 + Q2

2) + α′
(

Q1 +Q2

+Q2 −Q1

)
. (8)
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Thus, we would like to emphasize that the present system for quantum spins on the triangle
coupled with doubly-degenerate vibrational eg modes is equivalent to the Eg ⊗ eg vibronic
system intensively investigated in the context of the dynamical Jahn–Teller problem.

Before proceeding to the argument on the chiral order parameter of the spin system, we
shall recall the definition of the electronic orbital angular momentum in the dynamical Jahn–
Teller system. For the quantal Hamiltonian consisting of kinetic energy ((P2

1 + P2
2 )/2) and

HJT of (8), the pth eigenstate of the � = 1/2 manifold,�p,1/2, is given by

�p,1/2 = a1,pψ1,0φ+ + a2,pψ2,1φ− + a3,pψ3,0φ+ + a4,pψ4,1φ− + · · · (9)

where the ψn,m are the eigenfunctions of the isotropic two-dimensional harmonic
oscillator (n and m are radial and azimuthal quantum numbers, respectively), and φ+ and
φ− are degenerate electronic states φ± = du ± idv. The expansion (9) was found by rewriting
HJT in (8) into a suitable form with the use of φ± [14]. In the context of the spin–lattice system
under consideration, the block matrix Hk=±2π/3 in (5) already takes such a suitable form with
the use of Nakamura–Bishop’s bases |k = ±2π/3〉, and the whole wavefunction takes the
same form as (9).

In the vibronic state �p,1/2 in the dynamical Jahn–Teller system, the expectation value of
the electronic orbital angular momentum �̂z is given as

〈�̂z〉p = 〈�p,1/2|�̂z|�p,1/2〉
=

∞∑
n=1

|an,p|2(−1)n−1	� (p = 1, 2, . . .). (10)

Here, 	� is the expectation value of �̂z in the electronic states φ+ and φ−:

	� = 〈φ+|�̂z|φ+〉 = −〈φ−|�̂z|φ−〉. (11)

The emergence of an outstanding regular oscillation of 〈�̂z〉p as a function of energy (p) was
pointed out three decades ago [15], and has received renewed attention recently in the context
of nonlinear dynamics [14].

Now let us come back to the argument of the characteristic operator for the frustrated
quantum spin system. With use of the bases (4), we evaluate the expectation values for the
chiral order parameter

χ̂ = S1 · (S2 × S3) (12)

which characterizes the degree of frustration of the triangular antiferromagnet [4]. The
expectation values of χ̂ in each of the k = ±2π/3 states (4) are〈

k = 2π

3

∣∣∣∣χ̂
∣∣∣∣k = 2π

3

〉
= −

√
3

4
≡ −	χ〈

k = −2π

3

∣∣∣∣χ̂
∣∣∣∣k = −2π

3

〉
=

√
3

4
≡ 	χ.

(13)

(The value 〈k = 0|χ̂ |k = 0〉 = 0 is now irrelevant since |k = 0〉 is coupled only with the
higher frequency a1g mode.) Thus, the states |k = ± 2π

3 〉 and chiral order parameter χ̂ in

the spin–lattice system correspond to states |φ±〉 and �̂z in the dynamical Jahn–Teller system,
respectively. Taking the eigenstates similar to (9), the value 〈χ̂ 〉p in the pth eigenstate is given
by

〈χ̂ 〉p =
∞∑

n=1

|an,p|2(−1)n	χ . (14)
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Figure 3. Energy (ε) dependence of partially-averaged chirality χ(ε) dε
(= ∑′

p |∑∞
n=1(−1)na2

n,p | dε) with dε = 0.25 in units of 	χ . (a)–(c) correspond to
γ = 0, 0.2, 1.50, respectively. (γ is the strength of the trigonal field, i.e., the anharmonicity
defined below equation (17).) α = 0.50 and the unit of energy is h̄ω. The envelope function in (a)
is constructed by Gaussian coarse-graining of each peak.

This means that the behaviour of 〈χ̂〉p can be revealed by applying the analysis of 〈�̂z〉p in (10).
In fact, the expectation value 〈χ̂ 〉p in (14) shows regular oscillation with increasing energy
(see figure 3(a)), just as in the case of 〈�̂z〉p in the dynamical Jahn–Teller system [15]. This is
a consequence of the integrable system which includes no anharmonic term. If a chiral order
parameter of one triangular lattice is observed, we can propose the chiral order parameter as a
new precursor of quantum chaos.

Finally we note a role of the anharmonic term involved in the triangular three-particle
system. Let us introduce the Toda-lattice potential [16]

U(x) = c

d
e−dx + cx − c

d
, (15)

where x is the deviation of the interparticle distance from the equilibrium lattice constant. c
and d are constant with the condition cd > 0. The total lattice potential is a sum of U(x) with
x the three kinds of deviation for the three segments of the regular triangle. In the limit d � 1
under the constraint cd = constant, we obtain the following expansion in x :

U(x) = c

d

(
1 − dx +

d2

2!
x2 − d3

3!
x3 + · · ·

)
+ cx − c

d

= cd

2
x2 − cd2

6
x3 + · · · . (16)
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Suppressing a high-frequency a1g mode and noting the symmetry of the eg modes in figure 2,
the bilinear term in (16) leads to the 2d harmonic oscillator potential. On the other hand, the
cubic term in (16) leads to the trigonal(anharmonic) potential

VA = VA(Q1, Q2) = −γ
3
(Q3

1 − 3Q1 Q2
2) (17)

with γ = cd2/2 in terms of normal eg modes Q1 and Q2. Equation (17)
is just the Hénon–Heiles potential [17] and the resultant semiclassical dynamics
(quantal spin + classical lattice vibrations) can show a chaotic behaviour. Then, in the fully
quantized system 〈χ〉 has the largest value at low energies and shows a rapidly decaying
irregular oscillation with respect to energy by increasing the anharmonicity(chaoticity) γ (see
figures 3(b) and (c)).

In real triangular antiferromagnets like NaTiO2 or LiNiO2, the ground-state degeneracy
due to the intrinsic frustration is serious. To remove such degeneracy, quantum spins are
expected to be coupled with lattice vibrations. These extended lattices should correspond to the
cooperative Jahn–Teller system where individual Jahn–Teller clusters are mutually correlated.
As shown in figure 3, in the case of coupling with lattice-vibrational modes a chiral order
parameter for a three-spins cluster takes the largest value in low energies. Therefore this novel
order parameter will keep playing a vital role in quantifying the ground-state frustration in
extended triangular lattices coupled with harmonic or anharmonic phonons.

In conclusion the frustrated quantum spin system on a triangle coupled with lattice
vibrations is equivalent to an Eg ⊗ eg Jahn–Teller system. The chiral order parameter χ̂
should signify a quantum chaos (or quantum regularity) induced by the interaction between
quantum spins and anharmonic (or harmonic) lattice vibrations, and the energy dependence of
〈χ̂ 〉 that quantifies the spin frustration shows the transition from regular to irregular oscillations
by increasing anharmonicity. We hope the present work will stimulate further experimental
activities on the chiral order in frustrated triangular antiferromagnets.
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